First commit

This commit is contained in:
2020-06-23 22:53:47 +02:00
commit 368d134228
17 changed files with 308 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
venv

2
.idea/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,2 @@
# Default ignored files
/workspace.xml

1
.idea/.name generated Normal file
View File

@@ -0,0 +1 @@
MNIST

13
.idea/MNIST.iml generated Normal file
View File

@@ -0,0 +1,13 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="TestRunnerService">
<option name="PROJECT_TEST_RUNNER" value="Unittests" />
</component>
</module>

View File

@@ -0,0 +1,5 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="PROJECT_PROFILE" />
</settings>
</component>

7
.idea/misc.xml generated Normal file
View File

@@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="JavaScriptSettings">
<option name="languageLevel" value="ES6" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6 (Perceptron)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml generated Normal file
View File

@@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/MNIST.iml" filepath="$PROJECT_DIR$/.idea/MNIST.iml" />
</modules>
</component>
</project>

Binary file not shown.

Binary file not shown.

77
import_data.py Normal file
View File

@@ -0,0 +1,77 @@
from PIL import Image
from typing import Union, List, Generator, Callable
BOX_SHADING = " ░▒▓██"
IMAGE_ROW_SIZE = 28
IMAGE_COL_SIZE = 28
IMAGE_SIZE = IMAGE_ROW_SIZE*IMAGE_COL_SIZE
def show_picture(img_bytes: Union[bytes, List[int]]):
img = Image.new("RGB", (IMAGE_ROW_SIZE, IMAGE_COL_SIZE), "black")
pixels = img.load()
for i in range(IMAGE_ROW_SIZE):
for j in range(IMAGE_COL_SIZE):
pixel = img_bytes[IMAGE_ROW_SIZE*i + j]
pixels[j, i] = (pixel, pixel, pixel)
img.show()
def print_img_to_console(img: Union[bytes, List[int]]):
for row_start in range(0, IMAGE_SIZE, IMAGE_ROW_SIZE):
print("".join([BOX_SHADING[pixel // 51]*2 for pixel in img[row_start:row_start + IMAGE_ROW_SIZE]]))
print()
def read_labels(file_location: str):
with open(file_location, 'rb') as img_file:
img_data = img_file.read()
num_items = int.from_bytes(img_data[4:8], byteorder="big")
for i in range(8, num_items):
yield int.from_bytes(img_data[i:i + 1], byteorder="big")
def read_imgs(file_location: str, as_bytes=False):
with open(file_location, 'rb') as img_file:
img_data = img_file.read()
num_items = int.from_bytes(img_data[4:8], byteorder="big")
num_rows = int.from_bytes(img_data[8:12], byteorder="big")
num_cols = int.from_bytes(img_data[12:16], byteorder="big")
img_size = num_rows*num_cols
start_byte = 16
if as_bytes:
for end_byte in range(start_byte + img_size, num_items*img_size, img_size):
yield img_data[start_byte:end_byte]
start_byte = end_byte
else:
for end_byte in range(start_byte + img_size, num_items*img_size, img_size):
yield [pixel for pixel in img_data[start_byte:end_byte]]
start_byte = end_byte
def read_img_lbl_pairs(imgs_file: str, lbls_file: str):
for img, label in zip(read_imgs(imgs_file), read_labels(lbls_file)):
yield img, label
def test_x_y(num: int = -1) -> Callable[[], Generator]:
if num == -1:
num = 9992
def generator():
for i, (img, lbl) in zip(range(num), read_img_lbl_pairs("t10k-images.idx3-ubyte", "t10k-labels.idx1-ubyte")):
yield img, lbl
return generator
def train_x_y(num: int = -1) -> Callable[[], Generator]:
if num == -1:
num = 60000
def generator():
for i, (img, lbl) in zip(range(num), read_img_lbl_pairs("train-images.idx3-ubyte", "train-labels.idx1-ubyte")):
yield img, lbl
return generator

5
main.py Normal file
View File

@@ -0,0 +1,5 @@
import torch
from multiclass_perceptron import train_and_test_multiclass_perceptron
from import_data import show_picture, test_x_y
train_and_test_multiclass_perceptron()

118
mlp_network.py Normal file
View File

@@ -0,0 +1,118 @@
import numpy as np
from recordclass import recordclass
from typing import NamedTuple, Tuple, List, Callable, Generator
from import_data import train_x_y, test_x_y
import sys
class LossFun(NamedTuple):
exec: Callable[[np.array, np.array], float]
deriv: Callable[[np.array, np.array], np.array]
def sum_squares_loss_func(predicted: np.array, gold: np.array) -> float:
return sum((predicted - gold) ** 2)
def sum_squares_loss_derivative(predicted: np.array, gold: np.array) -> np.array:
return 2 * (predicted - gold)
sum_squares_loss = LossFun(sum_squares_loss_func, sum_squares_loss_derivative)
def sigmoid(x: np.array) -> np.array:
return np.where(x >= 0,
1 / (1 + np.exp(-x)),
np.exp(x) / (1 + np.exp(x)))
def sigmoid_deriv(x: np.array) -> np.array:
return sigmoid(x) * (1 - sigmoid(x))
def softmax(x: np.array) -> np.array:
array_sum = sum(x)
return np.exp(x) / np.exp(array_sum)
class FFNeuralNetwork:
Layer = recordclass("Layer", "weights last_out last_linear")
def __init__(self, structure: List[int], loss_fun: LossFun, learn_rate: float = 0.001):
self.learn_rate = learn_rate
self.loss_fun: LossFun = loss_fun
self.layers: List[FFNeuralNetwork.Layer] = []
for i, layer_size in enumerate(structure[1:]):
self.layers.append(
FFNeuralNetwork.Layer(
weights=np.zeros([structure[i], layer_size]),
last_out=np.zeros(layer_size),
last_linear=np.zeros(layer_size)))
def feed_forward(self, datum: List[float]):
out = datum
for i, layer in enumerate(self.layers):
layer.last_out = sigmoid(self.linear_forward(i, out))
out = layer.last_out
return sigmoid(out)
def linear_forward(self, layer_index, last_output: np.array):
layer = self.layers[layer_index]
result = np.dot(layer.weights.T, last_output) # + layer.bias
layer.last_linear = result
return result
def predict(self, datum: List[float]):
return np.argmax(self.feed_forward(datum))
def calculate_loss(self, input_data: List[float], golden: List[int]):
return self.loss_fun.exec(self.feed_forward(input_data), np.array(golden))
def back_prop(self, input_data: List[int], golden: int, output: np.array):
golden = [1 if i == golden else 0 for i in range(len(output))]
layer = self.layers[-1]
dloss_dout = self.loss_fun.deriv(output, golden)
dout_dlast_layer = sigmoid_deriv(layer.last_linear)
dlast_layer_dweights = self.layers[-2].last_out
dloss_dweights = np.outer(dlast_layer_dweights, (dloss_dout * dout_dlast_layer))
layer.weights += self.learn_rate * dloss_dweights
dloss_dprev = self.backprop_middle_layers(dloss_dweights) if len(self.layers) > 2 else dloss_dweights
layer = self.layers[0]
dout_dlast_linear = sigmoid_deriv(layer.last_linear)
dlast_linear_dinput = input_data
dloss_dinput = np.outer(dlast_linear_dinput, np.dot(dout_dlast_linear, dloss_dprev))
layer.weights += self.learn_rate * dloss_dinput
def backprop_middle_layers(self, dloss_dprev: np.array):
for i, layer in enumerate(reversed(self.layers[1:-1])):
dout_dlast_layer = sigmoid_deriv(layer.last_linear)
dlast_layer_dweights = self.layers[i - 1].last_out
dloss_dweights = np.dot(dlast_layer_dweights, np.dot(dout_dlast_layer, dloss_dprev))
layer.weights += self.learn_rate * dloss_dweights
dloss_dprev = dloss_dweights
return dloss_dprev
def train(self, input_data: Callable[[], Generator], epochs: int = 4):
for epoch in range(epochs):
print(f"Training epoch: {epoch + 1}")
for datum, label in input_data():
self.back_prop(datum, label, self.feed_forward(datum))
def train_and_test_neural_network():
model = FFNeuralNetwork([28**2, 100, 10], sum_squares_loss, 0.0001)
training_data_gen = train_x_y(1000)
test_data = test_x_y(10)()
model.train(training_data_gen, 5)
for test_datum, label in test_data:
print(model.feed_forward(test_datum), label)
np.set_printoptions(threshold=sys.maxsize)
print(model.layers[0].weights)
if __name__ == "__main__":
train_and_test_neural_network()

71
multiclass_perceptron.py Normal file
View File

@@ -0,0 +1,71 @@
from typing import Tuple, List, Callable, Generator
from import_data import test_x_y, train_x_y, IMAGE_SIZE, print_img_to_console, show_picture
import numpy as np
class MulticlassPerceptron:
class Perceptron:
def __init__(self, input_size, learn_rate: float = 0.0001):
self.weights = np.random.rand(input_size + 1) * 2 - 1
self.learn_rate = learn_rate
def train(self, data_lbl_pairs: Callable[[], Generator], positive_label: int, iterations: int = 10):
for num_iter in range(iterations):
print(f"Iteration number: {num_iter + 1}")
for i, (x, y) in enumerate(data_lbl_pairs()):
prediction = self.output(x)
label = 1 if y == positive_label else -1
correct = prediction >= 0 and label >= 0 or prediction < 0 and label < 0
if not correct:
self.weights = self.weights + self.learn_rate * label * np.array([1.0] + x)
def output(self, datum):
return np.dot(self.weights, np.array([1.0] + datum))
def get_normalised_weight_array(self):
return [int(x) for x in (((self.weights / np.max(self.weights) + 1) / 2) * 255)]
def __init__(self, input_size: int, num_classes: int, learn_rate: float = 0.001):
self.classifiers = [self.Perceptron(input_size, learn_rate) for _ in range(num_classes)]
def train(self, data_lbl_pairs: Callable[[], Generator], iterations: int = 10):
for i, classifier in enumerate(self.classifiers):
print(f"Training classifier for class {i}...")
classifier.train(data_lbl_pairs, i, iterations)
print()
def output(self, datum: List[int]):
return list(map(lambda x: x.output(datum), self.classifiers))
def prediction(self, datum):
return max(list(range(10)), key=lambda x: self.output(datum)[x])
def view_for_classifier(self, classifier_index: int):
return self.classifiers[classifier_index].get_normalised_weight_array()
def train_and_test_multiclass_perceptron(iterations: int = 5, training_inputs: int = 5000, test_inputs: int = 1000):
print("Loading data")
training_data_gen = train_x_y(training_inputs)
print("Begin training model!")
model = MulticlassPerceptron(IMAGE_SIZE, 10)
model.train(training_data_gen, iterations)
print("Model successfully trained.")
print("Testing model...")
test_data = list(test_x_y(test_inputs)())
n_correct = sum(model.prediction(x) == y for x, y in test_data)
accuracy = n_correct / len(test_data)
print(f"Accuracy: {accuracy} ({n_correct} correctly classified out of {len(test_data)} total test inputs.)")
for i in range(10):
print_img_to_console(model.view_for_classifier(i))
def get_trained_digit_model(iterations: int = 5, training_inputs: int = 5000, test_inputs: int = 1000):
training_data_gen = train_x_y(training_inputs)
model = MulticlassPerceptron(IMAGE_SIZE, 10)
model.train(training_data_gen, iterations)
return model
if __name__ == "__main__":
train_and_test_multiclass_perceptron()

BIN
t10k-images.idx3-ubyte Normal file

Binary file not shown.

BIN
t10k-labels.idx1-ubyte Normal file

Binary file not shown.

BIN
train-images.idx3-ubyte Normal file

Binary file not shown.

BIN
train-labels.idx1-ubyte Normal file

Binary file not shown.