First commit

This commit is contained in:
2020-06-23 22:53:47 +02:00
commit 368d134228
17 changed files with 308 additions and 0 deletions

118
mlp_network.py Normal file
View File

@@ -0,0 +1,118 @@
import numpy as np
from recordclass import recordclass
from typing import NamedTuple, Tuple, List, Callable, Generator
from import_data import train_x_y, test_x_y
import sys
class LossFun(NamedTuple):
exec: Callable[[np.array, np.array], float]
deriv: Callable[[np.array, np.array], np.array]
def sum_squares_loss_func(predicted: np.array, gold: np.array) -> float:
return sum((predicted - gold) ** 2)
def sum_squares_loss_derivative(predicted: np.array, gold: np.array) -> np.array:
return 2 * (predicted - gold)
sum_squares_loss = LossFun(sum_squares_loss_func, sum_squares_loss_derivative)
def sigmoid(x: np.array) -> np.array:
return np.where(x >= 0,
1 / (1 + np.exp(-x)),
np.exp(x) / (1 + np.exp(x)))
def sigmoid_deriv(x: np.array) -> np.array:
return sigmoid(x) * (1 - sigmoid(x))
def softmax(x: np.array) -> np.array:
array_sum = sum(x)
return np.exp(x) / np.exp(array_sum)
class FFNeuralNetwork:
Layer = recordclass("Layer", "weights last_out last_linear")
def __init__(self, structure: List[int], loss_fun: LossFun, learn_rate: float = 0.001):
self.learn_rate = learn_rate
self.loss_fun: LossFun = loss_fun
self.layers: List[FFNeuralNetwork.Layer] = []
for i, layer_size in enumerate(structure[1:]):
self.layers.append(
FFNeuralNetwork.Layer(
weights=np.zeros([structure[i], layer_size]),
last_out=np.zeros(layer_size),
last_linear=np.zeros(layer_size)))
def feed_forward(self, datum: List[float]):
out = datum
for i, layer in enumerate(self.layers):
layer.last_out = sigmoid(self.linear_forward(i, out))
out = layer.last_out
return sigmoid(out)
def linear_forward(self, layer_index, last_output: np.array):
layer = self.layers[layer_index]
result = np.dot(layer.weights.T, last_output) # + layer.bias
layer.last_linear = result
return result
def predict(self, datum: List[float]):
return np.argmax(self.feed_forward(datum))
def calculate_loss(self, input_data: List[float], golden: List[int]):
return self.loss_fun.exec(self.feed_forward(input_data), np.array(golden))
def back_prop(self, input_data: List[int], golden: int, output: np.array):
golden = [1 if i == golden else 0 for i in range(len(output))]
layer = self.layers[-1]
dloss_dout = self.loss_fun.deriv(output, golden)
dout_dlast_layer = sigmoid_deriv(layer.last_linear)
dlast_layer_dweights = self.layers[-2].last_out
dloss_dweights = np.outer(dlast_layer_dweights, (dloss_dout * dout_dlast_layer))
layer.weights += self.learn_rate * dloss_dweights
dloss_dprev = self.backprop_middle_layers(dloss_dweights) if len(self.layers) > 2 else dloss_dweights
layer = self.layers[0]
dout_dlast_linear = sigmoid_deriv(layer.last_linear)
dlast_linear_dinput = input_data
dloss_dinput = np.outer(dlast_linear_dinput, np.dot(dout_dlast_linear, dloss_dprev))
layer.weights += self.learn_rate * dloss_dinput
def backprop_middle_layers(self, dloss_dprev: np.array):
for i, layer in enumerate(reversed(self.layers[1:-1])):
dout_dlast_layer = sigmoid_deriv(layer.last_linear)
dlast_layer_dweights = self.layers[i - 1].last_out
dloss_dweights = np.dot(dlast_layer_dweights, np.dot(dout_dlast_layer, dloss_dprev))
layer.weights += self.learn_rate * dloss_dweights
dloss_dprev = dloss_dweights
return dloss_dprev
def train(self, input_data: Callable[[], Generator], epochs: int = 4):
for epoch in range(epochs):
print(f"Training epoch: {epoch + 1}")
for datum, label in input_data():
self.back_prop(datum, label, self.feed_forward(datum))
def train_and_test_neural_network():
model = FFNeuralNetwork([28**2, 100, 10], sum_squares_loss, 0.0001)
training_data_gen = train_x_y(1000)
test_data = test_x_y(10)()
model.train(training_data_gen, 5)
for test_datum, label in test_data:
print(model.feed_forward(test_datum), label)
np.set_printoptions(threshold=sys.maxsize)
print(model.layers[0].weights)
if __name__ == "__main__":
train_and_test_neural_network()